Name:	Stream:
545/2	
Chemistry	
Paper 2	
Nov 2020	
2hrs	

ST. MARYS' KITENDE Uganda Certificate of Education RESOURCEFUL MOCK EXAMINATION 2020 CHEMISTRY PAPER 2 2hours

Instructions;

- This paper consists of **two** sections **A** and **B**.
- Section **A** is **compulsory**. Attempt only **two** questions in section **B**.
- Answers to section **A** must be written in the **spaces provided** only. While those to questions in section B must be written on answer sheets provided.
- **Do not** use a pencil.

For Examiner's use only.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total

SECTION AAll questions are **compulsory**.

1. The full symbols of some atoms are given below. ${}^{14}_{6}W$, ${}^{19}_{9}X$, ${}^{27}_{17}Z$	
a) Identify the atoms of elements which are in the same group in the	ie Periodio
Table.	(1mark)
b) State the period in the Periodic Table to which element with atom belongs.	n W (½ mark
c) Write the formula of;	
i) the ion of atom \mathbf{X} .	(½ mark
ii)the compound formed when atom $oldsymbol{Y}$ reacts with atom $oldsymbol{Z}$.	(1mark)
d) Atom ${\bf Z}$ can react with atoms ${\bf W}$ and ${\bf Y}$ to form compounds ${\bf Q}$ and respectively. State which one of the compounds	
i) can conduct electricity.	(1mark)
ii) would have a lower solubility in water.	(1mark)

2. A substance G contains 52.2 % of carbon, 13.0 % of hydrogo oxygen. The relative molecular mass of G is 46 . (H=1, C=12,O=a) i) Calculate the empirical formula of G .	
a, i) calculate the empirical formula of a.	(2 /2 11101110)
	•••••
	•••••
	•••••
	•••••
ii) Determine the molecular formula of G .	(1mark)
b) When a mixture of G and excess concentrated Sulphuric ac 175°C , ethene was evolved.	id was heated to
i) Name G	(½ mark)
ii) Write equation for the reaction that led to the formation of e	ethene. (1mark)
3. During electrolysis of dilute Sulphuric acid between platinu two volumes of hydrogen were formed for one volume of oxy a) Write the formulae of all the ions present in the solution between the property of the solution between the property of the solution between the solution of the solution between the solution the solution the solution between the solution between the solution the solution between the solution the solution that the solution the solution the solution the solution that the solution the solution the solution that the solution the solution that the solution the solution that the s	ygen . fore electrolysis. (1 ½ marks)
•••••••••••••••••••••••••••••••••••••••	•••••

b) Write equation for the reaction that occurred a	
c) A red litmus paper was placed in the solution electrolysis.	near the cathode during
i) State what was observed.	(½ mark)
ii) Give a reason for your observation in (c) (i)	(1mark)
d) Show how the ratio of volumes of products of formula of water.	the electrolysis agrees with th (1mark)
4. a) When hydrogen chloride was passed throug cation A , a white shiny precipitate was formed. when the mixture was heated , but recrystallized cooling the solution.	The precipitate dissolved
i) State the identity of A .	(1mark)
ii) Write an ionic equation for the reaction that to	ook place between hydrogen
chloride and A .	(1½ marks)

b) Silver ni according					chlorio	de to form silver	chloride	
Ag+(aq)	+	Cl-(aq)			\rightarrow	AgCl(s)		
	loride	solution v	was add			de that would be m³ of a 0.5M sil		
	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	•••••		••••
•••••	• • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••
•••••	• • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••
•••••	• • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••
•••••	• • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••
5. Diamon as a jewelle a) State; i) What is a	ery.		·		-	s of carbon and i	t is widely us (1mar)	
••••			• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		••••
	-					ıseful as jeweller		
•••••						•••••		••••
•••••	• • • • • • • •	••••••	• • • • • • • • • • • •	•••••	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••
iii) One us	e of di	amond, o	other tha	an as j	jewell	ery.	(½ ma	ark)
			•••••	•••••	•••••			••••

b) Name	
i) another crystalline allotrope of carbon.	(½ mark)
ii) one amorphous carbon.	(½ mark)
	•••••
c) State;	
i) one property of the allotrope you have named in (b) (i).	(½ mark)
i) one use of the allotrope you have named in (b)(I) which is because	e of its
property that you have stated in (c)(i).	(½ marks
	•••••
ii) one use of the amprphous carbon you have named in (b)(ii).	(½ mark)
6. Under suitable conditions, iron can be converted into hydrated is oxide.a) State;i) the process in which iron is converted into hydrates iron (iii) oxide.	
	•••••
ii) two conditions necessary for the process you have stated in (a)(i) place.	to take (1mark)

iii) one method used to prevent the process in (a)(i) from occurring. (½ mark)	
b) The data below was obtained when carbon monoxide was passed over a heated sample of an oxide of iron until there was no further change. mass of empty dish = 10.98g mass of dish + the oxide of iron = 13.30g mass of dish + residue = 12.66g Determine the formula of the oxide of iron. (Fe=56, O=16) (3marks)	
7. a) i) Name one substance that when reacted with dilute Sulphuric acid can	
produce sulphur dioxide. (1mark)	
ii) Write an ionic equation for the reaction of the substance you have named ir	1
(a)(i) with dilute Sulphuric acid. (1 ½ marks)	
b) When sulphur dioxide was bubbled through acidified potassium manganate(VII) solution, the colour of the solution changed from purple to colourless. Give a reason. (1mark)	

i) Name one of the reagent that can react with sulphur dioxide to potassium manganate(VII) solution.	in a similar way (½ mark)
ii) State what would be observed of the reagent you have named treated with sulphur dioxide.	1 in (c)(i) was (1mark)
8. a) State what is meant by the term "acid."	(1mark)
	•••••
were reacted with equal masses of magnesium ribbon at 40°C . hydrogen evolved was measured with time. The twocurves below results of the experiment. Curve 's'	
Volume of hydrogen (cm³)	
i) Write an ionic equation for the reaction that took place betwe ribbon and ethanoic acid.	en magnesium 1 ½ marks)
	•••••••••••••••••••••••••••••••••••••••
ii) Identify the curve for; ethanoic acid (½ mark)

hydrochloric acid	(½ mark)
iii) Give a reason for your answer in (b)(ii).	(1mark)
iv) Sketch on the graph above, the curve you would obtain mass of magnesium powder was reacted with hydrochloric same conditions.	-
9. Dilute sodiumhydroxide was added to a sample of ammheating the mixture, a gas J was evolved, which was tested paper. a) State;	
i) what was observed	(1mark)
ii) the property of sodium hydroxide upon which the reacti	ion depended
in the property of sourcin flydroxide upon which the reach	(1mark)
iii) the practical application of the reaction.	(1mark)
b) i) Name the laboratory reagent which is used to identify	,
ii) State what is observed when J is treated with the reager in (b)(i)	nt you have named (1mark)
••••••	• • • • • • • • • • • • • • • • • • • •

10. Some carbon compounds form polymers.	
a) State what is meant by the term "polymer"	(1mark)
	•••••
b) Name one	
i) natural polymer	(½ mark)
•••	
ii) synthetic polymer	(½ mark)
c) i) Write equation to show how a polymer is formed from ethene.	
c) i) write equation to show how a polymer is formed from emeric.	,
ii) State one use of the polymer formed in (c) (i)	(½ mark)
	•••••
iii) The relative formula mass of the polymer formed in (c)(i) is 16,9 Determine the number of ethene molecules that combined to form	
	$1\frac{1}{2}$ marks)
	•••••
	•••••
	•••••
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •

SECTION B

Answer **two** questions only in this section, extra – questions answered will not be marked.

- 11. a) Excess copper(II) carbonate was added to dilute Sulphuric acid.
- i) State what was observed.

 $(1\frac{1}{2} \text{ marks})$

ii) Write equation for the reaction that took place.

 $(1\frac{1}{2} \text{ marks})$

iii) Briefly describe how pure crystals of the production in the reaction in (a)(ii) can be obtained from the reaction mixture.

(4marks)

b) State what would be observed and write equation for the reaction that takes place if to aqueous solution of the crystals in (a)(iii) was added.

i) Zinc powder

(3marks)

ii) Acidified barium chloride solution.

(2marks)

- c) **7.5g** of copper(II) chloride were dissolved in water and lead(II) nitrate solution was added, drop wise until in excess. Calculate the maximum mass of lead (II) chloride formed. (Pb=207, cl=35.5, CuCl2 = 135) (3marks)
- 12. a) Chlorine can be prepared by the reaction between manganese (IV) oxide and hydrochloric acid.
- i) State the conditions necessary for obtaining a reasonable quantity of chlorine by this methods and write equation for the reaction. $(2\frac{1}{2} \text{ marks})$
- ii)Nametwo principal impurities in the gas produced and state how you would remove each. (2marks)
- iii) Explain briefly how you would collect the gas.

(1mark)

- b) Describe and explain the reactions that take place when chlorine is passed into aqueous solutions of;
- i) Iron(II) chloride

(3marks)

ii) Potassium iodide

 $(2\frac{1}{2} \text{ marks})$

- (No equations are required)
- c) When dry chlorine is passed through hot iron wool in a combustion tube, the iron glows strongly and black crystals are deposited in the cooler parts of the tube.
- i) Name the substance formed as black crystals and state its property which is the reason for its deposition in the cooler parts as black crystals. (1½ marks)
- ii) The black crystals were dissolved in water and to resultant solution, aqueous sodium hydroxide added drop wise until in excess. State what would be observed and write an ionic equation for the reaction that takes place.

(2 ½ marks)

- 13. a) (i) Write equation for the reaction of ammonia with air in the presence of a catalyst and name the catalyst. (2marks)
- ii) The resulting gas in the reaction in (a)(i) was cooled and then reacted with oxygen. State what was observed and write equation for the reaction that took place.

 (2marks)
- b) Describe briefly how the product of the reaction in (a)(ii) can be converted to nitric acid and write equation for the reaction that leads to the formation of nitric acid.

 (2 ½ marks)
- d) Outline how nitric acid can react with each of the following substances. (Your answer in each case should include condition(s), a brief mention of what is observed and equation for any reaction that takes place.

i) Lead(II) oxide

(2marks)

ii) Sulphur

(3marks)

e) State one use of nitric acid

(½ mark)

- 14. Both the water containing dissolved calcium hydrogen carbonate and one containing dissolved magnesium sulphate are described as "hard water".
- a) Define the term "hard water".

(1mark)

- b) State the **type** of water hardness caused by the presence in water of dissolved;
- i) calcium hydrogen carbonate

(1mark)

ii) magnesiumsulphate

(1mark)

- c) Explain how calcium hydrogencarbonate may get into a water body and illustrate your explanation with suitable equation(s). (5marks)
- d) One litre of tap water containing dissolved calcium hydrogen carbonate required **12.0cm**³ of **0.5m** hydrochloric acid for complete reaction.
- i) Write equation for the reaction that took place.

(1 ½ marks)

- ii) Calculate the concentration in gdm³ of calcium hydrogen carbonate in tap water. (Ca=40, H=1, C=12, O=16) (2marks)
- e) State **one** physical and **one** chemical method by which water containing dissolved calcium sulphate can be made soft. (2marks)
- f) Since hard water wastes soap, soapless detergents are always preferred for laundry work.

i) Give a reason

(1mark)

ii) State **one**disadvantages of soapless detergents.

(½ mark)